skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Martinez, Adriana E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study uses hydraulic modeling to examine the impacts of two new fence sections at Eagle Pass, Texas: a container fence and a state-funded fence section south, and downstream, of the already modeled federal border fence. We used the model Nays2DFlood to compare fence and non-fence conditions at various recurrence intervals to determine how the fence is affecting flood extents, water depth, and water velocity. Water depth is deeper in the channel and the floodplain and shallower directly at the fence line when compared to non-fence conditions. Water velocity is faster within the channel and the floodplain and slower at the fence line during fence conditions. These impacts have the potential to adjust sediment regimes at this location and downstream of this area, altering water quality and channel morphology. Demographic analysis also show that particularly susceptible populations, including a majority Latino, low income individuals, those under 5, and those 65–74, are present in large numbers at these fence sections and are therefore vulnerable to flooding. Supplemental material is available for this article online. 
    more » « less